Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-392639

RESUMO

The devastating coronavirus disease 2019 (COVID-19) pandemic, due to SARS-CoV-2, has caused more than 47 million confirmed cases and more than 1.2 million human deaths around the globe1, and most of the severe cases of COVID-19 in humans are associated with neurological symptoms such as anosmia and ageusia, and uncontrolled inflammatory immune response2-5. Among therapeutic options6-8, the use of the anti-parasitic drug ivermectin (IVM), has been proposed, given its possible anti-SARS-CoV-2 activity9. Ivermectin is a positive allosteric modulator of the -7 nicotinic acetylcholine receptor10, which has been suggested to represent a target for the control of Covid-19 infection11, with a potential immunomodulatory activity12. We assessed the effects of IVM in SARS-CoV-2-intranasally-inoculated golden Syrian hamsters. Even though ivermectin had no effect on viral load, SARS-Cov-2-associated pathology was greatly attenuated. IVM had a sex-dependent and compartmentalized immunomodulatory effect, preventing clinical deterioration and reducing olfactory deficit in infected animals. Importantly, ivermectin dramatically reduced the Il-6/Il-10 ratio in lung tissue, which likely accounts for the more favorable clinical presentation in treated animals. Our data support IVM as a promising anti-COVID-19 drug candidate.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-388819

RESUMO

While recent investigations have revealed viral, inflammatory and vascular factors involved in SARS-CoV-2 lung pathogenesis, the pathophysiology of neurological disorders in COVID-19 remains poorly understood. Yet, olfactory and taste dysfunction are rather common in COVID-19, especially in pauci-symptomatic patients which constitutes the most frequent clinical manifestation of the infection. We conducted a virologic, molecular, and cellular study of the olfactory system from COVID-19 patients presenting acute loss of smell, and report evidence that the olfactory epithelium represents a highly significant infection site where multiple cell types, including olfactory sensory neurons, support cells and immune cells, are infected. Viral replication in the olfactory epithelium is associated with local inflammation. Furthermore, we show that SARS-CoV-2 induces acute anosmia and ageusia in golden Syrian hamsters, both lasting as long as the virus remains in the olfactory epithelium and the olfactory bulb. Finally, olfactory mucosa sampling in COVID-19 patients presenting with persistent loss of smell reveals the presence of virus transcripts and of SARS-CoV-2-infected cells, together with protracted inflammation. Viral persistence in the olfactory epithelium therefore provides a potential mechanism for prolonged or relapsing symptoms of COVID-19, such as loss of smell, which should be considered for optimal medical management and future therapeutic strategies.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-328369

RESUMO

Understanding how SARS-CoV-2 spreads within the respiratory tract is important to define the parameters controlling the severity of COVID-19. We examined the functional and structural consequences of SARS-CoV-2 infection in a reconstituted human bronchial epithelium model. SARS-CoV-2 replication caused a transient decrease in epithelial barrier function and disruption of tight junctions, though viral particle crossing remained limited. Rather, SARS-CoV-2 replication led to a rapid loss of the ciliary layer, characterized at the ultrastructural level by axoneme loss and misorientation of remaining basal bodies. The motile cilia function was compromised, as measured in a mucociliary clearance assay. Epithelial defense mechanisms, including basal cell mobilization and interferon-lambda induction, ramped up only after the initiation of cilia damage. Analysis of SARS-CoV-2 infection in Syrian hamsters further demonstrated the loss of motile cilia in vivo. This study identifies cilia damage as a pathogenic mechanism that could facilitate SARS-CoV-2 spread to the deeper lung parenchyma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...